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1.	 Introduction
In this paper, we consider a simple comparative framework to specify and analyse 
the performance of smoothing and guarantees of a savings account or product. The 
simplest guaranteed savings mechanism could be to invest in a short-term bond and 
re-invest interest earned. Although the outcome of this strategy is not certain, it is 
clearly capital guaranteed (as far as market risks are concerned). Many products exist 
that offer participation in the risky, but hopefully higher, returns of equity markets. 
However, due to the risk preferences of policyholders a guarantee is sold to limit their 
downside risk and even guarantee minimum vesting returns. 

Financial management tools for these products range from offsetting bespoke 
derivative contracts and dynamic hedging on the one end, to mutual funds that earn 
returns linked to returns of an investment portfolio. In the latter case, the investment 
portfolio could allow asset allocation of risky assets to the extent that the total value of 
assets exceeds the book value of the liability. The rationale for dynamic asset allocation 
is to provide some protection against market downturns and possibly provide a 
minimum rate of return to the policyholders of the mutual fund. In addition to 
dynamic asset allocation, a discretionary bonus is added based on returns in excess of 
the guaranteed minimum rate and fund solvency.

The issues pertaining to the determination of discretionary return, and asset 
allocation as a means to manage the risk (created by the guarantee), are well known. 
For example, there is a substantial element of model risk in that the payoff is not 
explicitly known and products are long dated. In practice, there are also legal and 
commercial considerations. See for example Dippenaar et al. (2007).

Recent research on valuation and risk management focuses on modelling the 
fair market value of the liability using risk neutral pricing, e.g. Hibbert and Turnbull 
(2003) and Mahayni and Schlogle (2008). In this paper, we do not focus on the 
valuation in particular, but rather explore the possible behaviour of the liability as 
defined by specific accrual logic (i.e. through various stochastic differential equations). 
To this end we explore the effect of simple dynamic asset allocation driven by the 
ratio between assets and liabilities. We then explore the parametric family of all such 
strategies to identify important characteristics for policyholders.

2.	 Organisation and Notation
The rest of the paper is organised as follows. In section 3 we explore various ideas 
and concepts in a continuous time setting, thus creating a framework which is 
subsequently used to specify participation and guaranteed minimal returns. Concepts 
from the insurance world, dynamic asset allocation, and portfolio insurance are 
introduced before considering payoffs from derivatives. In the insurance context 
we introduce reserve smoothing, bonus formulae and asset allocation. In terms of 
dynamic asset allocation, we adapt Constant Proportion Portfolio Investment (CPPI) 
and define Constant Proportion Liability Investment (CPLI). For this strategy, and 
the pure reserve smoothing case, closed form solutions of the Stochastic Differential 
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Equations (SDEs) are given. For derivatives, we point to structures that are related to 
with-profits exposure and we end section 3 with a diagrammatic summary between 
different concepts.

In section 4, we move to a discrete time setting where the liability value is 
updated periodically. We consider a class of liabilities, possibly with vesting guarantees, 
where the portfolio weightings are linear functions in the ratio of assets to liabilities 
with suitable upper and lower bounds. The purpose of this section is to explore how 
parameter choices affect the return and volatility of the liability in comparison to the 
risky asset.

We draw a couple of conclusions from the work in section 5.
Throughout, we use the following conventions in respect of notation. The 

reference assets are denoted by A. The assets are invested in a risky asset class with 
index price S and a risk-free cash asset with balance B. Throughout we assume that the 
risky asset follows Geometric Brownian Motion:

	 	 dS=S(dt+dZ) ,

where:  denotes the risky return per year and dZ represents a standard Brownian 
motion. Rates are annual unless stated otherwise. A portion of the liability is seen to 
accrue at the risk-free rate r; thus for the risk-free asset B we assume dB=rBdt. The 
liabilities are denoted by L and if with guarantee, by G. Subscripts to A, S, B, and L 
indicate time dependency.

The return of assets are of course related to investments in risky and risk-free 
assets through portfolio weightings. In other words, we may write

		  (1 )dA dS dB
A S B

ω ω= + − ,

where ω denotes the percentage risky assets in the portfolio. We may represent the 
liability’s return in continuous time as

		  dL
L

dA
A

gdt= +ξ ,

for some function ξ and guaranteed rate g. The function ξ represents the process of 
determining the bonus in a business sense. By combining the returns of the assets, 
and the logic that defines the change in liability, we can write the liability in a more 
standard form. 

By substituting for A, we write dL
L

dS
S

dB
B

gdt= + − +ξ ω ω( ( ) )1 , which 

states that the return of a liability could be seen as the weighted sum of the returns 

of risky, and risk-free (since gdt g
r
dB
B

= ) assets. By choosing weighting functions 
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θ ξω φ ξ ω= − +and = ( )1 g
r

 we may define the liability return in a standard form 

		  dL
L

dS
S

dB
B

= +θ φ 	 (2.1)

for weighting functions θ and . By adopting this formalism, we may drop the explicit 
reference to A and use S.

A portfolio, generated by these weighting functions, is called self financing if 

Sd L
S

Ld L
B

θ φ





 + 






 = 0 . This condition means that the portfolio’s return could be 

generated by continuously rebalancing (buying and selling at zero cost) between risky 
and risk-free assets. A sufficient condition for the liability portfolio, defined in this 
manner, to be self financing is that θ +  = 1. Generally, the weighting functions  and 
θ could be real valued mappings on the triple (t,S,L). However, we only consider the 
special but simple case, where the weighting functions are linear mappings in 1

q
 where 

q L
S

=  is called the coverage ratio.

The future coverage ratio measures the performance of the liability with respect 
to the assets’ performance on a path-by-path basis. Of course the inverse of the 
coverage ratio is the solvency ratio.

We will use: φ φ= + = −a
q
b1 1;θ  where (a,b) represent two real valued 

parameters. Ultimately these parameters define the quantitative contribution of risky 
and risk-free returns, dependent on the solvency ratio, to the liability.

The process for the coverage ratio by Ito’s Lemma is then 

		
dq
q

dt dZ rdt= − − + +( )(( ) ) .θ µ σ σ1 2 φ 	 (2.2)

The reserve is denoted by R=A−L  and it can be positive or negative. The balance sheet 
to the insurer can be simplistically represented, in Table 1, where the reserve has been 
split in its positive and negative parts:

Table 1 Balance sheet

ASSETS LIABILITIES
A L

R+ R–
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3.	 Framework
3.1	 Smoothing returns
Although there is no standard notion of smoothing returns, it is usually present in a 
with-profits product. We start this section by discussing the effect of arithmetic return 
smoothing. Let us assume that the returns are declared annually. The value of the 
reference portfolio of assets is denoted by Ai at the end of year i. The return is then 

r A
Ai
i

i

=
−

ln
1

. The return of the liability in year i will be denoted by s L
Li
i

i

=
−

ln
1

. The 

simplest mechanism to smooth is to average returns of the asset portfolio; for example, 

we use the 5-year average s ri j i j= = −

1
5 0

4Σ . The liability will then evolve according to:

. The annualised variance of ln Li is given by σ 2 1 2
−






i

 

for i>5, where σ is the annual return volatility of A. Over the minimum of 5 years 

the expected annual volatility of the liability will be σ σ1 2
5

0 78− ≈ . , a reduction of 

22%. Over 10 years the effect of smoothing returns will result in an expected volatility 

reduction of only 10% ( )σ σ1 2
10

0 9− ≈ . . Clearly this will make the short term 

volatility of the liability lower than that of the reference asset and less so for longer 
periods. So the impact of averaging is limited.

We later see that the liability’s volatility is drastically reduced when combined 
with a guarantee and bonus framework. The introduction of a bonus appears in 
section 3.3. We do not consider return averaging explicitly for the rest of the paper 
since the effect is limited and the effect could be considered by adjusting the asset 
volatility.

The cumulative annual volatility of the liability is materially reduced by linking 
its instantaneous return to the risk-free rate with low volatility. We call this reserve 
smoothing since it can be equated to keeping the reserve in cash although that is not 
generally the case. Such a commercial mechanism is analysed in Hansen and Miltersen 
(2002) and Miltersen and Persson (2003). Their definition is discrete and based on the 
accounting concepts of the client and reserve account. Because we view various ideas, 
defined continuously, as a stochastic process we now define the liability using a SDE. 
Such a SDE represents the accrual rule defining the notional value for the liability (in 
terms of various other known variables). Our particular choice of accrual rule could 
be constrained by what may be intuitively acceptable.
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3.2	 Reserve Smoothing
We assume that all assets are held in risky assets, collectively represented by S. We let 
the liability participate directly in the assets’ returns, and excess reserve is distributed 
(resp. shortfall is charged) as defined by a mean reverting process. For our purposes a 
process that pays out excess reserves and recoups for a shortfall over time would be a 
mean reverting process. In practice, the excess (or shortfall) reserve may be defined in 
a proportionate way relative to a target solvency ratio. A simple mathematical way to 
define a mean reverting process is by using an SDE of a special form.

Let us proceed by letting the liability participate in the risky returns by 
attributing a fraction of risky returns to the liability. Hence the liability will potentially 
accrue some of the higher expected risky returns. In addition, risky assets in excess 
of a liability multiple is transferred to the liability at a fixed rate. The liability multiple 
would be the liability multiplied by target solvency ratio. Conversely, a shortfall to 
the liability multiple is recouped by reducing the liability return. In other words, we 
consider the liability where it is defined by the SDE 

		

where 0<ρ≤1 denotes the participation rate, β≈1 denotes the target solvency ratio, 
and α is the reserve distribution or charging rate. Since R=S−L  the reserve then 
satisfies 
	 	

Figure 3.1
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Clearly the reserve reverts to the level 1 1
−









β

S  relative to the assets, with reversion 

rate αβ (if β close to 1 then 1 1 1− −
β

β ). Figure 3.1 illustrates a sample path over 

10 years (to construct the example we did not use the continuous time accrual but a 
discrete time version where the steps are quarterly) where μ=0.09, σ=0.15, ρ=0.6, 
α=1.5 and β=1.05 for the asset with the corresponding defined liability and reserve 
as percentage of assets.

Note that the instantaneous variance of the liability is then (ρσ)2 and this may 
still transfer substantial volatility to the liability. When ρ=0 the instantaneous volatility 
is 0 and the liability’s only return comes from paying out excess reserves, as represented 

by the term α β
1
q

dt−








 . We explore this case next to see what the effective volatility 

of the liability would be.
Writing the process for the liability in our standard format is 

	 	  if ρ=0. The solution to 

this SDE, after some algebraic manipulation, is 

	 	

We interpret this formula next. In continuous time, the P&L of holding x units 
of S at time u would be xdSu and an integral  represents the cumulative P&L 
from trading S. The last integral term of the equation above is of such a form, where 
the holding in S at time u is 1 1− −( )− −α β( )( )e t u . It means that the return of Lt can 
be seen as a weighted return of Su; 0<u<t. The volatility of Lt is determined by these 
weightings where the initial weighting in S is 1 1− −( )−α β( )e t , which is below 100%. 
The weighting grows to 100% at u=t . This drives the smoothing of returns of S in L. 
We demonstrate the magnitude of the reduction for different target solvency ratios 
and reserve payout rates next.

Lt is an Ito Integral and its variance is given by the integral 
, which is not tractable since S is stochastic. 

However, we may obtain an upper bound using Jenson’s inequality. It follows that this 
integral is bounded above by

	

Also note that since  the variance of St is given by 
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. Thus the ratio of variance of Lt to St is given by the leading term in brackets 
and it specifies the volatility reduction as a consequence of reserve smoothing. Figure 
3.2 illustrates the upper bound of average annual volatility (the square root of the 
leading term in brackets divided by t) of Lt as a function of the payout rate α, for 
σ=0.15 and t=10.

It demonstrates how effective reserve smoothing could be since the standard 
deviation of L10 could be lower than 4% when the risky asset volatility is 15%. In 
due course, in section 4, we consider a wide range of strategies and we demonstrate 
that there are many strategies that lower the terminal variance of L compared to the 
variance of S.

3.3	 Bonus formula
With-profits funds accrue a guaranteed return with a discretionary bonus, and we 
develop the logic for a simple vesting bonus over an accrual period. By retaining 
some of the asset returns in the reserve, a mechanism is required to transfer returns 
to policyholders. In the previous section, we defined the mechanism using an accrual 
rule premised on a mean reverting reserve level relative to the asset value. 

With-profits returns incorporate two accrual components. One part accrues the 
guaranteed return. The second component is a vesting bonus based on various factors 
including: the excess (average) return, current reserves or lack thereof (equivalently 
the solvency ratio), returns from competing products and expected future market 

Figure 3.2
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conditions. To the extent that the bonus is dependent on excess returns and the asset 
liability ratio, we present a formula that represents a vesting bonus. 

Since we work discretely over an accrual period, we digress from the continuous 
time setting briefly (we introduce the discrete time setting in section 4.1). For the 
moment subscripts will identify the parameter for a particular interval indexed with 
i. Suppose, by contractual agreement, that there is a guaranteed rate of return g per 
year. The excess return is max (0,ri+1−g)=(ri+1−g)+. If a fraction ρ of this is added to 
the return of the liability, then the coverage ratio would become (denoted by the hat)

. This formula reflects that, if the risky returns are below 
the guaranteed rate the coverage ratio would decrease by g−ri+1. On the other hand, 
if the risky return exceeds the guarantee rate then the coverage ratio will decrease by 
(1−ρ)(ri+1−g)>0. In general,  is unlikely to be equal to the target coverage ratio. 
Suppose the fund targets a coverage ratio eβ. To create a situation where the coverage 
ratio moves closer to the target, the excess return is adjusted upwards or downwards 
based on the difference between  and the target solvency ratio, if at all possible. 
The adjustment is affected by adding a fraction γ of the difference: . The 
vesting bonus (excess return and adjustments for coverage ratio) becomes

and liability will then be: . In summary 

This bonus formula shows that the policyholder only has upside exposure to the 
risky return to the extent that the risky return exceeds the guarantee rate by the term 
(ρ+γ(1−ρ))(ri+1−g). The rest of the bonus, i.e. γ(β−lnqi) reflects additional bonus to 
the extent that the remaining return (ri+1−g) exceeds the target coverage ratio deficit 
(lnqi–β). If the coverage ratio is lagging the target then a portion is also taken to 
reserves.

We would like to compare the accrual mechanism to others and to this end we 
need to ignore the bonus mechanism (ignore the guarantee rate mechanism defined 
by the max and g parts). Then the liability return would be (ρ+γ(1−ρ))ri+1+γ(lnqi–β), 
and in continuous time we could write . This 
form is analogous to the SDE defining reserve smoothing. The non-guaranteed version 
of the return can be viewed as that of a portfolio where the asset weightings depend 
linearly on the solvency ratio.

3.4	 Portfolio Insurance
Portfolio insurance is a concept that grew from dynamically hedging an option, 
thereby creating the option payoff, particularly before the Wall Street crash in 1987. 
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A simple put option dynamic hedging strategy accounts for portfolio insurance at a 
chosen point in time, which is a significant limitation from a practical point of view. 
Usually it is applied over a short time horizon which is rolled forward as time passes.

Other strategies that have been used for portfolio insurance include: Constant 
Proportion Portfolio Insurance (CPPI) (Balder, Brandl & Mahayni, 2009; Boulier & 
Kanniganti, 1995; Black & Jones, 1987), direct use of options and other derivatives 
on an ongoing basis found in Variable Annuities (Blamont & Sagoo, 2009), and more 
recently the definition of dynamic fund protection (Gerber & Pafumi, 2000), which 
has some similarity to a look-back option but on a contingent notional amount. As the 
protection becomes more effective the cost of the strategy also increases and it can be 
too expensive in practice.

For our purposes we define the liability in a way that the policyholder has 
participation to the upside (to some degree) and less risk on the downside (again to 
some degree), as opposed to using a CPPI or other portfolio insurance strategy. To this 
end we take the cue from the definition of CPPI, defined by the SDE 

This process protects the portfolio with value A from a floor level, denoted by Ft. The 
parameter m represents a leverage parameter. If the portfolio value falls to the floor 
value there would be no exposure to the risky asset and all investments would be in 
bonds that accrue to the guaranteed maturity value. Of course various additional 
features are introduced to CPPI from a commercial perspective. The behaviour of 
a CPPI strategy is well understood and studied. We adapt this approach so that the 
liabilities follow asset returns to the extent that the liability lags the assets, but accrue 
at the risk-free rate otherwise to limit the exposure to the insurer.

To this end we modify the strategy as follows. Risky returns accrue proportional 
to the amount that the liability is behind the assets. In other words the process for the 
liability will be 

		  	 (3.1)

for some parameters m>0 and β>0. The parameter m is an exposure leverage parameter 
and β represents the relative amount that the assets should exceed the liability. Because 
the implied weightings add up to one, the portfolio is self financing and consequently 
we know the fair value of Lt to be the initial capital invested L0. The distribution of L 
appears in Figure 3.3 where m=2, and β=1.05, and it indicates that the liability will 
perform better than the risky asset on the downside. 

We obtained this figure by using the solution of (3.1). To this end choose 
a=−m and b=1+mβ, in the Appendix. For our strategy m and β are non-negative and 
therefore 1+mβ≠0. Subsequently we obtain 
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It is straightforward to verify that, if m>0 and  ≥0, then Lt≥0. This is 
relevant to decide on parameters but this will not be generally true when we move to 
discrete time. This formula indicates that the liability does not depend on the particular 
path that the risky assets follow, similar to CPPI. The formula also explains that the 
liability is the same as a long or short position in the risky asset: 

—— the leading term shows a long position in St to the amount ,

—— assuming that  ≥0, the second term shows a non linear short 
exposure in St, that becomes bigger in size as St becomes smaller, because of the 
negative power −mβ<0,

—— the notional size of this total exposure becomes shorter and bigger in size as St is 
smaller, dominated by the second term. 

If the risky asset underperforms, then the non-linear short exposure in the second 
term creates some downside out-performance for the liability.

Figure 3.3
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3.5	 Derivatives and Conceptual Considerations
Derivatives’ application to create an investment with downside protection and upside 
participation are numerous. The difference to the approaches introduced above is that 
derivatives are defined with a payoff as opposed to an accrual rule. A derivative payoff 
depends on variables: the asset values at selected times. Examples of such products are 
Variable Annuities (Blamont & Sagoo, 2009). There is a great deal of similarity with 
the above concepts however. For example, bonuses that vest would be comparable to 
a ratcheting strike option – called a Cliquet option. Other option payoffs that are used 
would include Look-back options and Average-rate options.

In fact, in recent times the trend has been to view the guarantee exposure as a 
complex and exotic derivative. However, because an insurance product is generally 
not easily defined by a payoff at a point in time, derivative models for the value of 
the guarantee are usually implemented as Monte Carlo simulations of the referenced 
asset values or prices. These valuation, and consequent hedging, models require 
substantial investment in computational infrastructure as well as ultimately accepting 
some numerical error due to the slower rates of convergence from the Monte Carlo 
simulation of long dated and heavily path dependent payoffs. It is also rare that the 
market value of the asset is computed and reported in a like manner since that belongs 
to the policyholder. Shareholders bear the burden of the minimum guarantee in the 
end although some risk sharing may apply. 

It is also interesting to ask the question whether it is possible to follow a dynamic 
asset allocation in such a way that the resulting investment has a guaranteed minimum 
rate of return with equity upside. This is generally not possible as explored in Kleinow 
and Willder (2007) and Kleinow (2009).

We indicate structural similarities between smoothing, reserve distribution 
and portfolio insurance through their weighting functions, in Table 2 below. All these 
simplistic definitions of a liability accrual rule have portfolio weighting terms that 
depend linearly on the solvency ratio and include a fixed return component. It is the 
fixed return component that induces a smoothing of returns of the associated defined 
liability. When making well-considered choices of parameters, for example as with a 
bonus formula, the resulting liability may not be self financing and the mark to market 
of the asset is different to the book value. By using self-financing affine strategies to 
define the liability we always have the mark to market of the liability equal to the book 
value and the accrual rule fully defines the liability.

3.6	 Summary
We summarise our conceptual SDE framework in Tables 2 and 3. Table 2 gives a 
descriptive comparison and Table 3 an algebraic comparison. These tables makes it 
simple to compare the accrual mechanism defining the liability.

Reserve smoothing differs from the Bonus in the attribution of risky returns, i.e. 
in the θ component. The structure for the bond return is equivalent. We explore the 
characteristics of the parametric case, defined in discrete time, in the next section. The 
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parametric case represents all simple mechanisms of dynamically re-balancing a self-
financing portfolio, driven by the solvency ratio.

Table 2 Comparison of accrual logic for different liability definitions

Scheme Bonus Reserve Smoothing CPLI

Mechanism Risky Bond Risky Bond Risky Bond

Fraction (based of liability) X

Fraction re-based to asset level X

Proportional to excess solvency X X X

The balance/self financing X

Table 3 Weighting function comparison

Scheme θ 

Bonus ρ γ γβ
1
q

−

Reserve smoothing p
q
1

α αβ
1
q

−

CPLI m
q
m1

− β − + +m
q

m1 1( )β

Parametric − + −a
q

b1 1( ) a
q
b1

+

4.	 Discrete time
4.1	 Definitions
There are various options to define the liability in discrete time in the spirit of the 
continuous time approach. It is also essential to move to discrete time to make it 
possible to define the bonus and guarantee mechanism properly. We want to fix the 
weightings over an interval. In general we denote the fixed weightings θi and i using 
information up to the end of period i. From continuous time (using Ito’s Lemma) we 
have 

If the weightings are fixed over a time interval, then the solution to preceding SDE is 



322 |  MARCHAND VAN ROOYEN  A FRAMEWORK TO UNDERSTAND SMOOTHING AND GUARANTEES IN SAVINGS PRODUCTS

ASSA CONVENTION 2012, CAPE TOWN, 16–17 OCTOBER 2012 

where r s
si
i

i
+

+=








1

1ln . This formula motivates a possible definition of the liability in

discrete time. However, to replicate this liability in reality would require continuous 
rebalancing and, because we wish to fix the implicit asset weightings in an interval, we 
do not use this definition. We rather adopt the following definition:

when there is no guarantee. This is well defined regardless of the choice of weightings 
θi, i. When the liability is self financing, i.e. θi + i = 1, we get

	 (4.1)

To cater for a guarantee we modify the liability accrual rule as follows. Gρ denotes a 
guaranteed liability, where the parameter ρ represents the participation ratio, as it is 
defined 

		  	 (4.2)

The participation ratio is required so that we may price the guarantee and it represents 
a reduction in effective notional exposure. For the liability L we have a self-financing 
portfolio strategy, consequently we have the fair value (also called risk-neutral value) 
of the liability is its initial value, i.e. the capital initially invested. In mathematical 
finance, see for example Baxter and Rennie (1996), we write this as , 
where the expectation EQ refers to the risk neutral expectation (for simple Geometric 
Brownian Motion this expectation is computed by setting μ=r). However, for a 
guaranteed liability it is typical that its fair value exceeds the initial investment when 
the participation level is 100%. That would translate into a loss to the insurer which is 
not fair. In the analysis that follows we found the participation ratio  (with respect to 
selected parameters) such that the liability’s fair value is equal to the initial investment, 
i.e. that . We therefore suppress dependency on the participation ratio 
in the notation below.

We consider weightings in the parametric form that will be linear in 
1
q : 

For practical reasons it will be useful to add constraints on the value of the bond 
weighting i : bounded from above by u and from below by l: 

Unless stated we hence use the constrained parametric weightings with u=1 and l=0, 
which exclude any leverage.
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4.2	 Analysis 
We take a moment to position what comes next. The parameters (a,b) define the 
way risky returns, bond returns, and reserves are distributed to the liability L and 
guarantee liability G. They cover mechanisms from fixed asset weightings to fast 
changing weightings depending on the solvency ratios along a path of returns. At 
some fixed maturity, representing a payout date, the assets could be above or below 
the respective liability values. This creates exposure to the insurer since accounting 
reserves are assumed to be invested in risky assets. Policyholders would prefer that the 
liability value is higher if the market ends up “lower” than a reference point, say the 
initial value accrued at the inflation rate. These concepts are illustrated in Figure 4.1 
which shows one sample path. In the rest of the paper we describe what the impact of 
parameters are on expectations of the quantities introduced in the graph.

The rest of this section is arranged as follows. We first take a detailed look at the 
impact of the parameters on the relative performance of the liability. This will create 
a general understanding of the parameter impact. Then we analyse the performance, 
risks and costs of the liabilities from an economic perspective. This clearly identifies 
which parameter choices are of interest. We also illustrate the weighting functions to 
these parameters which is relevant from a practical point of view. 

We wish to describe how the liability L and guarantee G behaves outright, 
and relative to S, particularly as a consequence of choice of parameters (a,b). The 
performance of the liability relative to the asset is considered by computing the 

Figure 4.1
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expectations of L conditional on the terminal value of S: E(LT|ST∈[x ,y]) . We 
choose to use 5 equi-probable intervals for the terminal state of ST denoted by Ii for 
i=1,2 ,3 ,4 ,5 :

where F–1 denotes the inverse cumulative probability density function of the Normal 
distribution. We denote the conditional expectations, using non-italic Roman charac-
ters: q− i=  for i=1,2 ,3 ,4 ,5 .

Throughout the analysis we used the following parameter values: Starting asset 
and liability values = 100. The time horizon is 10 years with quarterly rebalancing. The 
expected asset return is 9% and the risk-free rate is 6%. The guaranteed liability has a 
guarantee rate of 2% and bonuses are vesting quarterly. The asset returns are subject to 
an annual volatility of 15%. In summary: S0=L0=100, T=10, δ=0.25, μ=0.09, r=0.06, 
σ=0.15, and g=0.02.

We digress for a moment and consider the continuous case where the cover ratio 
q is described by the following SDE:

dq=qθ((r−μ+σ2)dt+σdZ),

with solution (see Appendix)

Its expectation is 

This expectation represents the expected performance of the liability with respect to 
the risky assets. Figure 4.2 illustrates the expected coverage ratio at 10 years as function 
of the parameters (a,b). Recall that these parameters affect the contribution and the 
impact of the solvency ratio of risky and risk-free return to the liability’s return. It 
is easier to understand the impact of changes of these parameters by depicting the 
expected coverage ratio as it changes for different values of the ratio 

a
b

, and for 
different values of a+b. We use the ratio and sum through the rest of our analysis of 
L and G.

We provide the same illustration for the conditional expectations q−i. The 
calculation of these values was by Monte Carlo simulation for two cases: a+b=0.2 and 
a+b=0.8. We used a million sample paths, each with 40 quarterly steps (representing a 
10-year holding period), and returns of the risky asset using pseudo random numbers. 
The calculation was implemented in Matlab using standard functions.

Figures 4.3 and 4.4 observe different behaviour of L with respect to S primarily 
by different choices of the ratio a

b
. Also note that it is possible to realise negative values
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Figure 4.3

Figure 4.2
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for the liability from Figure 4.4, since q assume negative values in some cases. The 
remedy is to constrain the weightings and for obvious reasons we chose bounds 0 and 
1. For our purposes it is equivalent to assume that the effective portfolio representing 
the liability returns cannot be leveraged and no short selling of the assets is allowed. 
Systematically higher values for q–1 means that if assets end up to the downside, then 
the liability performed better than the risky asset. The conditional out-performance 
ranges widely and the interesting parameters are especially for ratios  a

b
 around –1.

We will later observe that intuitively acceptable strategies, i.e. with increasing 

exposure to risky assets when solvency ratios are higher, correspond to a
b

>−1. The 

sensitivity of the return contribution, as the solvency ratio changes, increases as the 

ratio a
b

 gets closer to –1. Also, note that if a+b≠0 then it is not possible that a
b

=−1. 

The impact of a+b can be thought of as the bond weighting when the solvency ratio 

equals 1. 

The conditional expectations indicate parameter selection with downside out 
performance and upside participation. In reality the liability will result from one asset 
price evolution over time and so it is relevant to consider the variance of the q-i’s. 
Figure 4.5 indicates the variances, associated with Figure 4.3 (i.e., for a+b=0.2). We 

Figure 4.4
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plot the standard deviations (note the logarithmic scale) for the conditional coverage 
ratio  for i=1,2 ,3 ,4 ,5 .

In conclusion we see significant expected out-performance on the downside 

for parameters choice where the ratio a
b

 is around –1. The variance is substantially 

different on either side of –1. This means a policyholder could still realise a substantially 
different outcome and therefore it is useful to consider the guaranteed liability G. A 
guaranteed liability would have a direct cost to the insurer for the potential that the 
assets fall below the liability but also a different direct exposure to asset returns and 
this will reduce the returns of the guarantee liability. The above information is useful 
when chosing parameters (a,b) for an outcome that is desirable to a policyholder or 
shareholder and more metrics are required to this end. A policyholder in a with-profits 
policy would like market participation to the upside, i.e.. q–3/4/5 as high as possible. 
To cushion the market downside the policyholder seeks q–1 and q–2 to be as large as 
possible. Clearly there is a trade-off between these two goals and some preferences to 
the upside and protection are required to pick parameters.

The insurer is exposed to the extent that the assets fall below the liability, since 
the reserves are also invested in the assets. The market cost of this exposure is given 
for L by 

Figure 4.5
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where the expectation is taken in the risk neutral measure. This cost is called the 
Investment Guarantee Reserve (IGR) and Figure 4.6 shows it with respect to different 

ratios 
a
b

 (we always used an initial coverage ratio of 1, i.e. q0=1). The figure indicates 
that the lowest IGR results when a+b is smaller and then the ratio has limited 
impact. For other combinations there is no systematic impact. Note that the IGR for 
a guaranteed liability can be lower than for a non-guaranteed liability for 

a
b

 around 
–0.5. Of course the expected return of the guaranteed liability is probably lower than 
in the non-guaranteed case.

To simplify the decision-making we do not consider the 5 conditional 
expectations. We pick a level of performance which will define the upside vs downside. 
In this context we choose this point to reflect a watermark return of 5% by using a 
level denoted WT=S0e0.05T=164.9 for T=10. Then we define the downside/upside 
expectations, for example for S, as Sd/u=E(ST|ST</>WT).

We now have all the components to indicate with respect to a wide selection 
of parameters (a,b) what the performance and risks would be. Tables 4 and 5 give 

Figure 4.6
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comprehensive raw results for the sake of completeness. It is not simple to identify 
useful behaviour from these tables and we investigate a more relevant “subset” later. 

Table 4 Statistics for L10

a
b –1.5 –1.5 –1.05 –1.05 –0.95 –0.95 –0.5 –0.5 0 0 0.5 0.5

a+b 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8

E(LT) 230.6 231.9 228.4 197 237.2 203.4 231.6 233.1 231.6 199.3 231.7 193.5

E(LT|ST<164.9) 137.9 138.0 132.7 164.9 131.9 155.1 138.0 136.2 138.0 168.9 138.1 171.8

E(LT|ST>164.9) 265.3 266.9 264.3 209.0 276.9 221.4 266.4 269.1 266.4 210.7 266.9 201.6

EQmax(0,LT−ST) 3.8 3.8 3.4 13.6 3.4 12.1 3.8 6.4 3.8 14.8 3.8 15.0

Std(L) 84.9 91.3 79.0 29.7 113.5 44.9 92.7 108.9 91.0 43.2 91.1 18.5

Std(LT|ST<164.9) 25.1 23.7 27.7 28.2 16.3 31.1 23.1 30.8 23.6 3.2 23.8 7.9

Std(LT|ST>164.9) 72.4 82.0 59.8 19.5 109.0 34.8 84.4 105.4 81.7 45.7 81.6 14.3

Table 5 Statistics for G10

a
b –1.5 –1.5 –1.05 –1.05 –0.95 –0.95 –0.5 –0.5 0 0 0.5 0.5

a+b 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8

E(GT) 183.2 191.3 176.4 172.7 206.4 173.0 194.2 210.4 191.8 203.1 190.8 189.2

EQ(GT) 99.6 99.9 99.9 100.1 99.7 100.3 99.8 99.7 99.9 100.0 99.9 99.8

E(GT|ST<164.9) 179.3 173.5 188.5 196.3 156.2 195.4 170.8 153.2 173.0 164.0 173.7 175.2

E(GT|ST>164.9) 184.7 197.9 171.9 163.9 225.4 164.6 202.8 231.6 198.8 217.8 197.3 194.5

EQ(max(GT−ST,0)) 17.7 15.8 21.4 24.2 10.9 24.6 14.9 10.4 15.6 13.2 15.9 16.3

Std(GT) 13.7 18.1 30.2 35.3 46.1 39.7 23.6 56.3 19.0 47.3 17.5 12.8

Std(GT|ST<164.9) 12.6 10.2 19.3 34.5 17.7 33.4 10.2 17.5 10.2 8.5 10.3 6.4

Std(GT|ST>164.9) 13.8 15.7 32.2 31.3 38.7 38.6 21.2 50.6 16.6 47.6 15.2 10.4

ρ 40% 61% 44% 49% 46% 53% 40% 80% 40% 86% 40% 85%

Figure 4.7 shows the size of expected value, upside and downside performances, 
and costs. The figure illustrates the impact of dynamic asset allocation, driven by the 
solvency ratio, since parameters control the contribution of risky and risk-free returns 
of a self-financing portfolio. The figure also indicates the improvement of downside 
risk and performance by adding a guarantee mechanism. This comes with a reduction 
of performance on the upside.

To simplify and consolidate the raw results we compute annual returns, risks 
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and costs (from Tables 4 and 5) in Table 6. It provides a summary of the economic 
impact of different accrual rules.

Table 6 Return, Std and IGR for liabilities for a+b=0.2/0.8

a/b L return G return Std L Std G Igr L Igr G

–1.5 8.35%/6.78% 6.06%/5.47% 11.64%/4.76% 2.37%/6.46% .37%/1.28% 1.64%/2.16%

–1.25 8.31%/7.1% 5.95%/5.48% 11.1%/6.98% 3.17%/7.26% .37%/1.14% 1.74%/2.19%

–1.05 8.26%/8.15% 5.68%/5.54% 10.94%/13.96% 5.41%/7.16% .34%/.63% 1.94%/2.11%

–0.95 8.64%/8.46% 7.25%/7.44% 15.13%/14.77% 7.06%/8.46% .33%/.62% 1.04%/.99%

–0.75 8.47%/7.44% 6.82%/7.47% 13.23%/11.26% 4.64%/9.52% .37%/1.25% 1.3%/1.07%

–0.5 8.4%/6.9% 6.64%/7.09% 12.66%/6.86% 3.85%/7.37% .37%/1.38% 1.4%/1.24%

–0.25 8.43%/6.7% 6.56%/6.69% 12.59%/4.37% 3.4%/4.44% .37%/1.4% 1.43%/1.38%

0 8.4%/6.6% 6.51%/6.38% 12.42%/3.02% 3.13%/2.13% .37%/1.4% 1.45%/1.51%

 0.25 8.41%/6.54% 6.49%/6.22% 12.45%/2.51% 2.99%/1.29% .37%/1.41% 1.47%/1.62%

 0.5 8.4%/6.52% 6.46%/6.12% 12.43%/2.36% 2.9%/1.25% .37%/1.41% 1.48%/1.66%

Figure 4.7
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We now wish to focus on a subset of parameters, those where the ratio 
a
b  

lies between –1 and 0, and take further steps to consolidate the results in terms of 
performance ratios.

We identify whether some of the considered liabilities are better suited from a 
with-profits perspective. Consider the weighting functions, illustrated in Figure 4.8, 
that result for the indicated choices of parameters a and b.

We see that, for 
a
b

 between –1 and 0, we get weighting functions that are intuitive, 
i.e. the liability return weights the asset return higher for higher solvency ratios. For 
this subset, corresponding to intuitive with-profits accrual rules, we generated more 
granular results. Table 7 indicates the resulting returns, volatilities and Sharpe ratios 
with respect to a wide range of intuitive parameters.

These numbers show that some accrual rules may result in negative Sharpe 
ratios which one may wish to avoid. They also demonstrate an earlier claim that the 
volatility of a guaranteed liability is substantially lower. We summarise the high level 
impact of parameter choices next. Table 8 states the parametric choices that give the 
optimal choices in respect of returns, economic performance, risk to the policyholder 
and risk to the insurer.

Figure 4.8
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Table 7 Return, Std, and Sharpe ratio for L/G with respect to intuitive weightings

a+b / a/b L/G Std L/G Sharpe ratio L/G
asset 9,0% 15,9% 0,189

0.20;–0.95 8.32%/6.22% 15.1%/7.1% 15.3%/3.1%
0.20;–0.70 8.07%/5.45% 13%/4.5% 15.9%/–12.3%
0.20;–0.50 8.05%/5.25% 12.7%/3.9% 16.1%/–19.4%
0.20;–0.30 8.03%/5.14% 12.6%/3.5% 16.2%/–24.8%
0.20;–0.10 8.02%/5.07% 12.5%/3.2% 16.1%/–28.8%
0.40;–0.95 8.11%/6.38% 15.2%/8% 13.9%/4.7%
0.40;–0.70 7.24%/5.88% 11.3%/6.3% 10.9%/–1.9%
0.40;–0.50 7.15%/5.51% 10.2%/4.9% 11.3%/–10.1%
0.40;–0.30 7.11%/5.26% 9.6%/3.9% 11.5%/–19.1%
0.40;–0.10 7.09%/5.11% 9.3%/3.2% 11.7%/–27.5%
0.60;–0.95 7.97%/6.43% 15%/8.3% 13.1%/5.2%
0.60;–0.70 6.51%/6.26% 10.5%/8.3% 4.8%/3.2%
0.60;–0.50 6.3%/5.8% 8.2%/6.3% 3.7%/–3.2%
0.60;–0.30 6.21%/5.38% 7%/4.4% 3%/–14.1%
0.60;–0.10 5.23%/5.04% 3.4%/2.9% –22.2%/–32.6%
0.80;–0.95 7.83%/6.44% 14.9%/8.5% 12.3%/5.2%
0.80;–0.70 6%/6.35% 10.3%/9.4% 0%/3.7%
0.80;–0.50 5.52%/5.85% 6.9%/7.4% –6.9%/–2.1%
0.80;–0.30 5.33%/5.44% 4.7%/5% –14%/–11.2%
0.80;–0.10 5.24%/5.04% 3.4%/2.9% –22.2%/–32.6%

Table 8 Summary of parameter effects on liability performance

Goal L G

Highest return a+b & 
a

b
 smaller a+b larger & 

a

b
 smaller

Highest Sharpe ratio a+b smaller & 
a

b
 larger a+b larger than 0.2 & 

a

b
 close to –0.95

Best downside protection a+b & 
a

b
 larger a+b larger & 

a

b
 smaller

Lowest risk a

b
 smaller a+b & 

a

b
 larger

Lowest IGR a+b smaller & 
a

b
 close to –0.95 a+b larger & 

a

b
 close to –0.95
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A more detailed impact of the ratio a
b

 is shown in Figure 4.9. for a+b=0.5. It indicates 
the effect of increasing the return sensitivity to the solvency ratio, i.e. when the ratio 
a
b

 gets closer to –1, of attributing returns thereby creating efficiency in the liability.

5.	  Conclusions
In this paper we explored a special class of liability accrual rules where the asset 
allocation depends only on the coverage ratio. In continuous time, where the 
weightings are linear, the liability’s evolution can be stated explicitly. We showed, for a 
specific set of assumptions about returns and volatility, what the impact of parameters 
would be in this class, and identified in particular those of interest to a with-profits 
savings product. We also considered the comparable guaranteed liability. 

Given our framework and assumptions we apply the results of the analysis. For 
the highest Sharpe ratio one may choose a more equity weighted portfolio when q=1, 
e.g. select a+b=0.2. In order to retain some downside out-performance, it would be in 
order to choose a

b
 further away from −0.95, e.g. a

b
=−0.75.

Thus we get a=−0.8 and b=1. If a guarantee structure is appropriate for the risk 
preferences of a policyholder, one may identify which liability rule has an expected 
return that exceeds the risk-free rate, e.g., a+b=0.5 and a

b
=−0.95, i.e., a=−9.5 and 

Figure 4.9
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b=10. These parameters result in a lower IGR and meaningful participation giving a 
positive Sharpe ratio.

Our analysis above also indicates the following, which could be seen as obvious: 
the more the liability is defined to be like the risky asset, the lower the IGR and better 
the expected performance but with less downside out-performance; the performance 
of our liability with guarantee, when priced to par, materially reduced the participation 
and thus its expected return. 

We emphasize that these conclusions are for our framework and assumptions. 
In practice other product factors would have an impact on performance and costs 
and it would be naive to extrapolate the above conclusion as good heuristics in any 
way. The analysis demonstrates how sensitive the performance could be for parameter 
choices and structural constraints. Further work, to draw stronger and more general 
conclusions, should include:

—— the impact of assumptions (returns, volatilities and guarantee levels),
—— possible changes due to return processes more reflective of real markets, and
—— extending the product setting to allow for additional premiums and benefits to 

the policyholder.

In the end, the quest is to identify a combination of liability definition and product 
features that are demonstrably economically effective for the policyholder and insurer.
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Appendix

Solution to  when q(θ–1)=–q=–a–bq

We shall find a solution for L by making use of the ratio of liability to assets: . 
Application of Ito’s lemma yields 

If  it follows that 

which can be integrated explicitly. Thus, if b≠0, then 

Noting that  we obtain

Finally

When b=0 we have  with solution 

and 


